152 research outputs found

    Experimental Quantum Hamiltonian Learning

    Get PDF
    Efficiently characterising quantum systems, verifying operations of quantum devices and validating underpinning physical models, are central challenges for the development of quantum technologies and for our continued understanding of foundational physics. Machine-learning enhanced by quantum simulators has been proposed as a route to improve the computational cost of performing these studies. Here we interface two different quantum systems through a classical channel - a silicon-photonics quantum simulator and an electron spin in a diamond nitrogen-vacancy centre - and use the former to learn the latter's Hamiltonian via Bayesian inference. We learn the salient Hamiltonian parameter with an uncertainty of approximately 10−510^{-5}. Furthermore, an observed saturation in the learning algorithm suggests deficiencies in the underlying Hamiltonian model, which we exploit to further improve the model itself. We go on to implement an interactive version of the protocol and experimentally show its ability to characterise the operation of the quantum photonic device. This work demonstrates powerful new quantum-enhanced techniques for investigating foundational physical models and characterising quantum technologies

    Translation of evidence-based Assistive Technologies into stroke rehabilitation: Users' perceptions of the barriers and opportunities

    Get PDF
    Background: Assistive Technologies (ATs), defined as "electrical or mechanical devices designed to help people recover movement", demonstrate clinical benefits in upper limb stroke rehabilitation; however translation into clinical practice is poor. Uptake is dependent on a complex relationship between all stakeholders. Our aim was to understand patients', carers' (P&Cs) and healthcare professionals' (HCPs) experience and views of upper limb rehabilitation and ATs, to identify barriers and opportunities critical to the effective translation of ATs into clinical practice. This work was conducted in the UK, which has a state funded healthcare system, but the findings have relevance to all healthcare systems. Methods. Two structurally comparable questionnaires, one for P&Cs and one for HCPs, were designed, piloted and completed anonymously. Wide distribution of the questionnaires provided data from HCPs with experience of stroke rehabilitation and P&Cs who had experience of stroke. Questionnaires were designed based on themes identified from four focus groups held with HCPs and P&Cs and piloted with a sample of HCPs (N = 24) and P&Cs (N = 8). Eight of whom (four HCPs and four P&Cs) had been involved in the development. Results: 292 HCPs and 123 P&Cs questionnaires were analysed. 120 (41%) of HCP and 79 (64%) of P&C respondents had never used ATs. Most views were common to both groups, citing lack of information and access to ATs as the main reasons for not using them. Both HCPs (N = 53 [34%]) and P&C (N = 21 [47%]) cited Functional Electrical Stimulation (FES) as the most frequently used AT. Research evidence was rated by HCPs as the most important factor in the design of an ideal technology, yet ATs they used or prescribed were not supported by research evidence. P&Cs rated ease of set-up and comfort more highly. Conclusion: Key barriers to translation of ATs into clinical practice are lack of knowledge, education, awareness and access. Perceptions about arm rehabilitation post-stroke are similar between HCPs and P&Cs. Based on our findings, improvements in AT design, pragmatic clinical evaluation, better knowledge and awareness and improvement in provision of services will contribute to better and cost-effective upper limb stroke rehabilitation. © 2014 Hughes et al.; licensee BioMed Central Ltd

    GBR 12909 administration as a mouse model of bipolar disorder mania: mimicking quantitative assessment of manic behavior

    Get PDF
    Mania is a core feature of bipolar disorder (BD) that traditionally is assessed using rating scales. Studies using a new human behavioral pattern monitor (BPM) recently demonstrated that manic BD patients exhibit a specific profile of behavior that differs from schizophrenia and is characterized by increased motor activity, increased specific exploration, and perseverative locomotor patterns as assessed by spatial d. It was hypothesized that disrupting dopaminergic homeostasis by inhibiting dopamine transporter (DAT) function would produce a BD mania-like phenotype in mice as assessed by the mouse BPM. We compared the spontaneous locomotor and exploratory behavior of C57BL/6J mice treated with the catecholamine transporter inhibitor amphetamine or the selective DAT inhibitor GBR 12909 in the mouse BPM. We also assessed the duration of the effect of GBR 12909 by testing mice in the BPM for 3 h and its potential strain dependency by testing 129/SvJ mice. Amphetamine produced hyperactivity and increased perseverative patterns of locomotion as reflected in reduced spatial d values but reduced exploratory activity in contrast to the increased exploration observed in BD patients. GBR 12909 increased activity and reduced spatial d in combination with increased exploratory behavior, irrespective of inbred strain. These effects persisted for at least 3 h. Thus, selectively inhibiting the DAT produced a long-lasting cross-strain behavioral profile in mice that was consistent with that observed in manic BD patients. These findings support the use of selective DAT inhibition in animal models of the impaired dopaminergic homeostasis putatively involved in the pathophysiology of BD mania

    Using internet enabled mobile devices and social networking technologies to promote exercise as an intervention for young first episode psychosis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Young people with first episode psychosis are at an increased risk for a range of poor health outcomes. In contrast to the growing body of evidence that suggests that exercise therapy may benefit the physical and mental health of people diagnosed with schizophrenia, there are no studies to date that have sought to extend the use of exercise therapy among patients with first episode psychosis. The aim of the study is to test the feasibility and acceptability of an exercise program that will be delivered via internet enabled mobile devices and social networking technologies among young people with first episode psychosis.</p> <p>Methods/Design</p> <p>This study is a qualitative pilot study being conducted at Orygen Youth Health Research Centre in Melbourne, Australia. Participants are young people aged 15-24 who are receiving clinical care at a specialist first episode psychosis treatment centre. Participants will also comprise young people from the general population. The exercise intervention is a 9-week running program, designed to gradually build a person's level of fitness to be able to run 5 kilometres (3 miles) towards the end of the program. The program will be delivered via an internet enabled mobile device. Participants will be asked to post messages about their running experiences on the social networking website, and will also be asked to attend three face-to-face interviews.</p> <p>Discussion</p> <p>This paper describes the development of a qualitative study to pilot a running program coupled with the use of internet enabled mobile devices among young people with first episode psychosis. If the program is found to be feasible and acceptable to patients, it is hoped that further rigorous evaluations will ultimately lead to the introduction of exercise therapy as part of an evidence-based, multidisciplinary approach in routine clinical care.</p

    On-chip generation of high-dimensional entangled quantum states and their coherent control

    Get PDF
    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science1. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics2, for increasing the sensitivity of quantum imaging schemes3, for improving the robustness and key rate of quantum communication protocols4, for enabling a richer variety of quantum simulations5, and for achieving more efficient and error-tolerant quantum computation6. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states7. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2)8, 9, 10, 11. Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode

    High Purcell factor generation of indistinguishable on-chip single photons

    Get PDF
    On-chip single-photon sources are key components for integrated photonic quantum technologies. Semiconductor quantum dots can exhibit near-ideal single-photon emission, but this can be significantly degraded in on-chip geometries owing to nearby etched surfaces. A long-proposed solution to improve the indistinguishablility is to use the Purcell effect to reduce the radiative lifetime. However, until now only modest Purcell enhancements have been observed. Here we use pulsed resonant excitation to eliminate slow relaxation paths, revealing a highly Purcell-shortened radiative lifetime (22.7 ps) in a waveguide-coupled quantum dot–photonic crystal cavity system. This leads to near-lifetime-limited single-photon emission that retains high indistinguishablility (93.9%) on a timescale in which 20 photons may be emitted. Nearly background-free pulsed resonance fluorescence is achieved under π-pulse excitation, enabling demonstration of an on-chip, on-demand single-photon source with very high potential repetition rates

    Large-scale silicon quantum photonics implementing arbitrary two-qubit processing

    Get PDF
    Photonics is a promising platform for implementing universal quantum information processing. Its main challenges include precise control of massive circuits of linear optical components and effective implementation of entangling operations on photons. By using large-scale silicon photonic circuits to implement an extension of the linear combination of quantum operators scheme, we realize a fully programmable two-qubit quantum processor, enabling universal two-qubit quantum information processing in optics. The quantum processor is fabricated with mature CMOS-compatible processing and comprises more than 200 photonic components. We programmed the device to implement 98 different two-qubit unitary operations ( with an average quantum process fidelity of 93.2 +/- 4.5%), a two-qubit quantum approximate optimization algorithm, and efficient simulation of Szegedy directed quantum walks. This fosters further use of the linear-combination architecture with silicon photonics for future photonic quantum processors

    The role of hypothalamic H1 receptor antagonism in antipsychotic-induced weight gain

    Get PDF
    Treatment with second generation antipsychotics (SGAs), notably olanzapine and clozapine, causes severe obesity side effects. Antagonism of histamine H1 receptors has been identified as a main cause of SGA-induced obesity, but the molecular mechanisms associated with this antagonism in different stages of SGA-induced weight gain remain unclear. This review aims to explore the potential role of hypothalamic histamine H1 receptors in different stages of SGA-induced weight gain/obesity and the molecular pathways related to SGA-induced antagonism of these receptors. Initial data have demonstrated the importance of hypothalamic H1 receptors in both short- and long-term SGA-induced obesity. Blocking hypothalamic H1 receptors by SGAs activates AMP-activated protein kinase (AMPK), a well-known feeding regulator. During short-term treatment, hypothalamic H1 receptor antagonism by SGAs may activate the AMPK—carnitine palmitoyltransferase 1 signaling to rapidly increase caloric intake and result in weight gain. During long-term SGA treatment, hypothalamic H1 receptor antagonism can reduce thermogenesis, possibly by inhibiting the sympathetic outflows to the brainstem rostral raphe pallidus and rostral ventrolateral medulla, therefore decreasing brown adipose tissue thermogenesis. Additionally, blocking of hypothalamic H1 receptors by SGAs may also contribute to fat accumulation by decreasing lipolysis but increasing lipogenesis in white adipose tissue. In summary, antagonism of hypothalamic H1 receptors by SGAs may time-dependently affect the hypothalamus-brainstem circuits to cause weight gain by stimulating appetite and fat accumulation but reducing energy expenditure. The H1 receptor and its downstream signaling molecules could be valuable targets for the design of new compounds for treating SGA-induced weight gain/obesity

    New Pharmacological Agents to Aid Smoking Cessation and Tobacco Harm Reduction: What has been Investigated and What is in the Pipeline?

    Get PDF
    A wide range of support is available to help smokers to quit and aid attempts at harm reduction, including three first-line smoking cessation medications: nicotine replacement therapy, varenicline and bupropion. Despite the efficacy of these, there is a continual need to diversify the range of medications so that the needs of tobacco users are met. This paper compares the first-line smoking cessation medications to: 1) two variants of these existing products: new galenic formulations of varenicline and novel nicotine delivery devices; and 2) twenty-four alternative products: cytisine (novel outside of central and eastern Europe), nortriptyline, other tricyclic antidepressants, electronic cigarettes, clonidine (an anxiolytic), other anxiolytics (e.g. buspirone), selective 5-hydroxytryptamine (5-HT) reuptake inhibitors, supplements (e.g. St John’s wort), silver acetate, nicobrevin, modafinil, venlafaxine, monoamine oxidase inhibitors (MAOI), opioid antagonist, nicotinic acetylcholine receptors (nAChR) antagonists, glucose tablets, selective cannabinoid type 1 receptor antagonists, nicotine vaccines, drugs that affect gamma-aminobutyric acid (GABA) transmission, drugs that affect N-methyl-D-aspartate receptors (NMDA), dopamine agonists (e.g. levodopa), pioglitazone (Actos; OMS405), noradrenaline reuptake inhibitors, and the weight management drug lorcaserin. Six criteria are used: relative efficacy, relative safety, relative cost, relative use (overall impact of effective medication use), relative scope (ability to serve new groups of patients), and relative ease of use (ESCUSE). Many of these products are in the early stages of clinical trials, however, cytisine looks most promising in having established efficacy and safety and being of low cost. Electronic cigarettes have become very popular, appear to be efficacious and are safer than smoking, but issues of continued dependence and possible harms need to be considered

    Methodological strategies to understand smartphone practices for social connectedness in later life

    Get PDF
    Digital practices in later life are not yet well understood. Therefore, this paper discusses the framework for a research design project that aims at tracing differences and similarities in how older adults use their smartphones in circumstances in and outside their homes in Spain, the Netherlands, Sweden, and Canada. The research questions of this international research project focus on the extent to which digital mobile practices relate to perceived social connectedness among older adults aged 55–79 years old. While studies have shown that the subjective experience of ‘being connected’ supports continued wellbeing in later life, there remains an insufficient understanding of the processes through which digital mediated social interaction is effective for social connectedness. The analytical framework of the project prioritizes the co-constituency of (digital) technology and ageing, and takes digital practices in everyday life as its entry point. The main data collection tool will be the tracking of smartphone activity of 600 older adults (150 per country) during four weeks. An online survey and qualitative interviews will gather data about the meanings of the quantified digital practices, and how they shape (if they do) the participants’ connection to the world. This approach will allow us not only to get insight into what older adults say how they used their smartphone but also to gain insight into their real-life daily use. The assessment of the challenges, strengths, and weaknesses of the methods contributes towards an accurate and appropriate interpretation of empirical results and their implications
    • 

    corecore